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Abstract—The field of IoT has blossomed and is positively
influencing many application domains. In this article, we bring
out the unique challenges this field poses to research in computer
systems and networking. The unique challenges arise from the
unique characteristics of IoT systems such as the diversity of
application domains where they are used and the increasingly
demanding protocols they are being called upon to run (such as
video and LIDAR processing) on constrained resources (on-node
and network). We show how these open challenges can benefit
from foundations laid in other areas, such as fifth-generation
network cellular protocols, machine learning model reduction,
and device–edge–cloud offloading. We then discuss the unique
challenges for reliability, security, and privacy posed by IoT
systems due to their salient characteristics which include het-
erogeneity of devices and protocols, dependence on the physical
environment, and the close coupling with humans. We again show
how open research challenges benefit from the reliability, secu-
rity, and privacy advancements in other areas. We conclude by
providing a vision for a desirable end state for IoT systems.

Index Terms—Foundations, Internet of Things, path for-
ward, reliability and security challenges, systems and networking
challenges.

I. INTRODUCTION

I oT IS an interdisciplinary field as evidenced by the breadth of
disciplines that contribute techniques to this field. It involves

hardware, software, and often humans, with resource constraints
on the hardware (cost, complexity, and energy sources) and
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the software (complexity, compute and memory footprint, and
disconnected mode of operation). To focus the discussion, let
us lay down a working definition of IoT, and the ways it is
different from the allied disciplines of cyber–physical systems,
networked control systems, and embedded systems.

The Internet of Things refers to networked devices
that interact with their physical surroundings and
communicate over wireless networks in social con-
texts to offer a human-centric application value.

Accordingly, concerns in IoT intersect with cyber–physical
systems in that the system may contain embedded compo-
nents and may include associated control algorithms. However,
IoT systems are by definition distributed, putting more empha-
sis on end-to-end systems challenges, scalability, and network
support within the end-to-end application context, as opposed
to, say, control systems. Also, IoT systems, by virtue of
distribution and scale, are often multipurpose. As such, spe-
cific capabilities may be put together dynamically, leading to
challenges in composability and integration.

Application Context: IoT application areas fall into three
categories.

1) Enhance our spaces, in which humans live (e.g., homes
and offices).

2) Empower the devices we use (e.g., appliances and
vehicles).

3) Improve the efficiency of production and delivery
systems (e.g., agriculture, the power grid, and manu-
facturing) so as to improve human life and productivity.

An important aspect of these applications is the human in
the loop, to generate sensor readings (e.g., crowdsourcing),
to validate control decisions, or to act upon the actuation
commands.

Challenges and Constraints: There are some key tech-
nical challenges that are salient to the IoT domain. There
are often constraints on hardware and software that preclude
heavy-duty computation (such as expensive asymmetric cryp-
tographic operations) or significant storage overhead (such as
a large ensemble of models). There is often a constraint on
the wireless networking available to the nodes—it is often low
data rate and there may also be periods of disconnected oper-
ation, such as due to wireless brownouts or interference from
multiple devices operating in a public ISM band. There is often
a real-time constraint on the tasks, else financial loss or human
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Fig. 1. Overview of the novel systems and networking requirements and challenges in IoT systems and foundations from the current work that we can build
upon.

discomfort may occur, such as inefficient electricity use in an
industrial setting or an uncomfortable indoor environment. The
heterogeneity of devices and the corresponding wireless pro-
tocols they support pose challenging engineering problems.
For example, one device may have access to trusted hard-
ware such as ARM TrustZone while the majority of devices
may not have such hardware; some may speak only ZigBee
as a short-range wireless protocol and not have the long-range
cellular or LoRa stack, while other nodes may have the capa-
bility for long-range communication. Finally, the human in the
loop brings forth challenges for the operation (must be simple
enough in the parts where human interaction is needed), main-
tainability (must not require complex or frequent maintenance
operations), and safety (must not endanger human users).

In this work, we present the broad open challenges in IoT,
from the computer systems and networking aspect and from
the reliability, security, and privacy aspects. Within each, we
first look at the foundations that we can build on in terms of
analytical, architectural, and systems building blocks already
available to us.

II. SYSTEMS AND NETWORKING CHALLENGES

A. Unique Challenges

IoT systems required substantial systems design innovation,
primarily because of: 1) the diversity of sensors and actu-
ators with different wireless technologies they use; 2) the
variety of indoor and outdoor locations they are deployed
in; 3) the unpredictable conditions under which they are
deployed, including unpredictability in availability and quality
of network connectivity; 4) the interaction of humans in the
loop; and 5) the energy and compute power constraints.

In recent years, researchers have explored a wide range of
challenges related to IoT networks with small, battery-powered
sensors. At present, we can concede that we understand that
space well ([124], [134]). The next phase of IoT research

will focus on analytics and control using richer sensors that
provide various forms of visual information: camera, radar,
LiDAR, stereo cameras, etc. These “visual”1 sensors provide
semantically rich information but can require significant pro-
cessing to extract this information. Equally important, with
decreasing cost and form factors, sensors, such as cameras
and LiDARs are being deployed densely, even on personal
mobile devices. These will enhance the quality of decisions
for most applications discussed above. Beyond richer sensors,
future IoT systems will include autonomous drones and vehi-
cles that add significant complexity to control and actuation.
Constraints imposed by compute and network will be the pri-
mary bottlenecks in realizing the full potential of these future
IoT systems.

B. Performance Requirements

Before delving into the challenges, we first identify (Fig. 1)
some key requirements for an IoT network consisting of sen-
sors (such as cameras and LiDARs), and actuators (such as
drones and vehicles).

High Throughput/Frames: While a low-power temperature
sensor generates a few bytes of data every minute, a camera
or LiDAR can generate data at several hundred Mbps. Their
devices are often connected via a wireless interface to a cloud
or edge cluster to process the frames. Transmitting raw sensor
data may be infeasible given even future wireless standards.

Low Latency: For actuating a drone or a vehicle, an IoT
system will need to support ultralow end-to-end latencies on
the order of a few milliseconds. The two main sources of
latency in the IoT control loop are: 1) processing the sensor
data and 2) communication delay.

High Accuracy: Especially for visual sensing, accuracy is
an essential performance metric. For example, the accuracy

1For simplicity, we call these visual sensors, because they can “see” the
environment, albeit in different ways than humans might in some cases.
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of sensing and tracking objects can affect vehicular or drone
control significantly.

Future IoT systems will need to simultaneously satisfy all of
these requirements, and visual sensors, together with near real-
time control of vehicles and drones, represent extreme points
in the space of requirements across all three dimensions.

C. Research Challenges

We now describe new research challenges that arise as a
result of the three requirements mentioned above.

Information Extraction and Fusion: Future IoT networks
will include a wide range of sensors in terms of sensing
frequency and the amount of data they generate. Rich sen-
sors, such as cameras and LiDAR produce significantly more
information than a low-end thermostat or an accelerometer.
In order to fuse sensors meaningfully, we need to extract
only useful and nonredundant information in a timely man-
ner. Combining sensing information from different sensing
modalities is an extremely challenging task [56]. The exist-
ing systems fuse 2–3 different types of sensors, e.g., camera
with LiDAR [34], [67], [111]: but do not generalize to a large
number (both in type and count) of heterogeneous rich sen-
sors. The main challenges related to information extraction
and fusion in IoT with a large number of rich sensors are as
follows.

Data Registration: Incorporating data from different scans
or sensors to generate a unified view is often known in the
computer vision and autonomous vehicle community as data
registration [55]. Data registration deals with properly com-
bining a large number of 3-D point clouds obtained from
3-D sensors, such as stereo cameras and LiDAR where each
sensor generates a point cloud with respect to its own frame
of reference. 3-D point clouds tend to be very large in size
(from hundreds of megabytes to hundreds of gigabytes) and
thus cannot be exchanged between devices. On the other
hand, such point clouds tend to provide very fine grained and
extremely dynamic sensing information. Therefore, the time-
liness and accuracy of data registration are important for any
IoT applications that rely on the combined point cloud.

Foundations to Build Upon: Data registration has been stud-
ied for many years in the context of autonomous vehicles and
robotics maneuvers and path planning [15], [75]. Most exist-
ing work relies on the fact that the sensors are co-located or
located at close proximity (on the vehicle or robot) with sig-
nificant overlap in the sensing regions. In the context of IoT,
roadside 3-D sensors may cover a large area with very small or
limited overlap in the sensing area [140]. For such situations,
the existing solutions may be inadequate. Recent work has
started exploring the problem of data registration in the context
of infrastructure (roadside) LiDARs [136], [139]. Nonetheless,
these solutions do not address data registration for roadside
3-D sensors at scale and are limited to only 2–3 sensors at
maximum. The state-of-the-art methods also lack data regis-
tration techniques involving heterogeneous IoT infrastructure
sensors, such as LiDAR and stereo cameras.

Detection/Classification/Tracking Techniques: The existing
computer vision detection/classification/tracking techniques

for camera and LiDAR processing are typically resource-
heavy, limited to a small number of devices, and performed on
cloud infrastructure [40]. In an IoT environment, significant
innovation is required for real-time sensing across multiple
devices, such as tracking activity across a large number of
overlapping and nonoverlapping cameras [77] or LiDARs.

Foundations to Build Upon: Object detection, classifica-
tion, and tracking are active areas of research in computer
vision [20], [101]. These tasks are usually performed by train-
ing a deep neural network (DNN) with a large data set catered
toward a particular detection, classification, or tracking task.
For illustration, let us consider the task of real-time human
activity detection in live camera streams. There exist a large
number of monolithic DNN models [49], [108], [121] that
extract features from video streams and predict actions of
every human appearing in the video. To detect interactions,
a class of methods analyze the moving trajectories of objects
near a person to predict the interaction between the person
and the object [8], [86] while another class of methods opt
to train separate DNNs to detect group behavior such as
“walk in group” and “stand in queue” ([7] and [10]). While
these methods perform well for a small number of detec-
tion/classification/tracking tasks (limited by the availability of
relevant data sets), they cannot be tailored for any tasks out-
side the vocabulary and thus are not generalizable for future
IoT operations. Even with the existing DNN solutions for
specific activities, human intervention is required for analyz-
ing complex activities that involve specific activities being
detected by the DNN, e.g., “two men chatting, then exchang-
ing a document, then walking in a group.” Moreover, the
processing time of the video steams increases exponentially
on shared computation resources as the number of tracked
objects increases [77]. Additional challenges appear as we
scale such detections across multiple heterogeneous devices.
To perform tracking across multiple video streams, we need
proper synchronization of the images frames, timely process-
ing of image frames, and reidentification of objects/humans
across multiple cameras. The existing work has explored the
single-camera action detection [108], [121], [142], tracking of
people across multiple overlapping cameras [91], [109], [128]
and nonoverlapping cameras [29], [102], [118]. However,
due to the complexity of the problem, very few researchers
have looked into a real-time generic tracking and detection
across multiple cameras which is required for future IoT
systems [77]. Similar observations can be made for almost
all kinds of detection/classification/tracking state of the arts.
Looking forward, significant innovation and development are
required toward the detection/classification/tracking technique,
which are generalizable for a large vocabulary of tasks dealing
with a large number of heterogeneous imaging devices. One
way to achieve this is to take advantage of the existing DNN
solutions and combine them in a semantically meaningful,
systematic way as shown in [77].

Compute and Communication Constraints: Processing the
data stream from one camera/LiDAR is a challenging task
itself. For an IoT network with multiple cameras/LiDARs, the
processing time and resource requirements are very high [138].
This calls for innovations at the algorithmic level to process
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a large number of sensor data streams with accuracy and pro-
cessing time similar to the processing of a single sensor data
stream. This has to be accomplished on platforms that are
not as resource rich as server-class platforms and where the
isolation guarantees among applications are weaker. In addi-
tion, transmitting multiple sensory data streams to a cloud or
edge requires a lot more additional communication bandwidth
than supported by a typical shared wireless medium such as
WiFi [123].

Foundations to Build Upon: Scalable processing of video
and LiDAR data streams is a cutting edge field of research.
Both types of data require resource-heavy CNN/DNN to
extract the embedded rich information. Future IoT networks
will include a large number of heavy sensors such as cameras,
LiDAR for smart sensing. While some applications require the
processing of combined data (via data registration, explained
above), others require concurrent and separate processing of
individual data streams on shared compute resources. Often,
based on the task query, one might need to run multiple dif-
ferent DNN on the same video stream. Most of the future IoT
applications will rely on a chain of DNNs running on edge
clusters. Researchers have looked into this problem in the con-
text of live video streaming from multiple cameras [60], [138].
The state-of-the-art live-stream processing systems operate
knobs for different performance settings (frame rate and reso-
lution) to maximize the shared server utilization and maintain
a minimum quality of service for all task queries.

While downgrading the quality of frames is a potential scal-
able option, it often results in lowering the accuracy of the
DNN/CNN. A more recent class of approaches employ GPU
multitenancy scheduling on TensorFlow serving platforms [2]
to improve GPU sharing and utilization [58] on the shared
edge cloud. Some state-of-the-art techniques also save GPU
cycles by caching intermediate results [36], [72], lazily acti-
vating DNN [77], and batching the input for higher per-image
processing speed on GPU [36]. However, all these solutions
work well for a small range of applications for lower frame
rate and a small number of concurrent streams (<10) and
concurrent queries, and cannot scale to large numbers of con-
current streams. This is relevant because we anticipate that
future IoT systems will include a large number of concurrent
streams, multiple edge clusters, and a large number of DNNs
(or chains of DNN) per image stream. To this, we need to
remove any redundancy present in the input, DNN, or GPU
schedule. Identifying a set of sensing-objective-specific key-
frames (instead of processing every frame) is essential and is
a promising field of research in this context.

Beyond video, recent work has started exploring the design
of vehicular IoT systems that use depth perception sen-
sors. For example, AVR [100] has explored a combination
of several techniques, including dynamic object extraction
and adaptive transmission of stereo camera point clouds to
enable extended vehicular vision. Similarly, CarMap [4] effi-
ciently uploads updates to high-definition maps over a cellular
network, using a combination of techniques to produce a lean
map representation that does not sacrifice positioning accuracy.

Accuracy Versus Performance Tradeoff: To support com-
munication and processing of multiple data streams from

rich sensors (such as cameras and LiDARs) with limited
shared resources (bandwidth, GPU, etc.), researchers often
adopt techniques to drop data frames (randomly or selec-
tively) by keeping a set of key-frames [123]. Such approaches
tend to achieve the performance requirement in terms of
throughput (goodput) and runtime at a cost of reduced accu-
racy. However, to achieve a certain throughput, one needs
to achieve accuracy above a certain threshold. Thus, the
tradeoff between accuracy and performance requires care-
ful analysis and consideration for designing systems and
algorithms for future IoT. Specifically, simple application-
agnostic techniques such as frame dropping may not suffice to
achieve good accuracy; often, application-specific techniques
that leverage problem structure to extract only information
essential to the problem [4], [100] can provide orders of mag-
nitude performance improvement while minimally impacting
accuracy.

Role of Edge/Cloud Offload and Device Computation:
Edge computing [107] will play a central role in future IoT
networks. Often the onboard processing power of a cam-
era/LiDAR device is unable to run necessary processing
pipelines (deep learning models) to extract the embedded rich
information. This calls for offloading the computation either
to a cloud with large processing power at the cost of larger
unpredictable delays or to a nearby edge device, or a clus-
ter of edge devices, with enough processing power and with
lower, more predictable delays. This raises a series of ques-
tions: which option should we choose, edge or cloud, or a
hybrid? What data to share with the edge/cloud? How to min-
imize the end-to-end latency of the processing pipeline while
reducing the communication overhead? The future also pre-
supposes the possibility of having multiple heterogeneous edge
devices, some of which are unmanaged while the rest are man-
aged (by commercial organizations). Unmanaged edge implies
that such devices are voluntarily contributed by the public and
are unpredictably available.

Of particular interest in this context, is the introduction
of machine intelligence into the IoT edge/cloud architec-
ture [130]. IoT will push the boundaries of federated learning
motivated by the fact that each individual device may be too
resource constrained and by privacy requirements in IoT set-
tings. Neural networks offer a great portable representation,
much like a language virtual machine (e.g., Java and Python),
that makes it possible to distribute inference algorithms across
edge and cloud machines, and control the amount of com-
munication among them. Services might: 1) generate DNN
models (from client-supplied training data); 2) help with (auto-
matic) labeling of data sets; and 3) perform model reduction
(if needed for caching on the edge device). Generated models
might be executed as appropriate on the server or client. This
vision poses several challenges.

Model Reduction for IoT Devices: Modern machine intel-
ligence algorithms are heavyweight. To run on a low-end
IoT device, solutions are needed to reduce the computa-
tional and memory needs of machine inference. Recent work
shows that model reductions of orders of magnitude are pos-
sible [76], [133]. For example, a device can cache a reduced
model that identifies a number of most frequent commands,
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leaving the more general (but rarely encountered) identification
tasks to the cloud. Models can also be customized to specific
hardware. For example, rather than minimizing computational
cost, a model that fully utilizes an available GPU will give
a better quality/consumption tradeoff [132]. Alternatively, the
end device may choose to offload the inference to a server.
Communication between the resource-constrained IoT end
device and an edge/cloud-processing server will need to be
compressed [39]. Autoencoder-like solutions allow asymmet-
ric encoding/decoding where the IoT-device-side encoder (that
compresses the data onto a lower dimensional manifold) is
lightweight, whereas the decoder (running on an edge server)
is more involved. Order-of-magnitude reduction in commu-
nication was shown using compressive offloading [131]. On
the server, since improvements in result accuracy diminish
with increased depth of the neural network, efficiency con-
siderations suggest that once the desired quality is achieved,
the service should refrain from executing additional layers. A
scheduler may determine how many stages to execute to avoid
diminishing returns.

Data Prioritization: A commonly overlooked challenge in
IoT-centric machine inference contexts is one of data pri-
oritization. When a human driver observes a scene, they
instinctively prioritize regions of higher criticality in the
scene (such as a child on the side of the road who might
run across at any instant) over regions of lower critical-
ity (such as buildings in the background, fire hydrants,
trees, etc.). No such prioritization is done in the current
machine learning (ML) software. Rather, some of the heav-
iest computational operations are performed on all bits of
an image in every frame without prioritization. A novel
stack is needed that is aware of the importance of different
regions in an image. Some examples were proposed in recent
literature.

Communication Requirements: IoT networks heavily rely
on wireless communication for interdevice communications.
State-of-the-art wireless communication technology needs to
accommodate for the high throughput and low-delay require-
ments of future IoT networks involving cameras and LiDARs.
Camera or LiDAR data streaming via state-of-the-art wire-
less communication standards experience many challenges
affecting the performance, such as unnecessary retransmis-
sion, bandwidth fluctuation due to dynamic channel quality,
lack of dedicated channel access due to contention-based
MAC protocol, and heterogeneous devices sharing that same
medium [57]. The situation is likely to become more adverse
by the incorporation of augmented reality (AR) and virtual
reality (VR) devices in future IoT networks. A single VR
device requires hundreds of megabytes to couple gigabytes
of dedicated bandwidth for a reasonable user experience [13].
While data compression and coding techniques [125] can
help to reduce the bandwidth requirements, current wireless
networking technologies still fall short of fulfilling the band-
width and performance guarantee requirements. Moreover,
in a wireless network with a large number of heteroge-
neous devices (cameras, LiDARs, etc.) and actuators (drones,
autonomous cars), the network needs to have provision for
prioritizing certain types of traffic, such as control traffic, as

well as maintain fairness and performance guarantees among
multiple data streams.

Foundations to Build Upon: The fifth-generation network
(5G) is the obvious core wireless technology for the future
IoT network as it will allow for a higher data rate (up to
tens of GBps) which is orders of magnitude higher than
the current wireless technologies [99]. To this, researchers
have started to explore 5G-based communication architec-
tures for future IoT [94]. While 5G offers significantly more
bandwidth and data rates, we still require technologies to
offer precise control of traffic and performance in the shared
wireless medium. To meet the performance demands by
facilitating the flexible allocation of resources, future IoT
networks must make use of recent network virtualization con-
cepts, such as a software-defined network (SDN) [17], [117],
network functions virtualization (NFV) [87], and network
slicing [5].

In addition, modifications are required in streaming proto-
cols (e.g., video) to reduce unnecessary information and save
bandwidth [60], [95], [138]. Conventional streaming proto-
cols (such as RTMP [97] for video) and encoding standards
(such as H.265 [57] for video) are tailored toward maximiz-
ing user quality of experience (QoS). Such protocols tend to
optimize the frame rate and resolutions to avoid unnecessary
interruptions and delays. In future IoT networks, the major-
ity of streaming will be tied to analytics where the objective
is to maximize the inference accuracy and the performance
objectives are different from normal live streaming. For exam-
ple, in a video analytics application, frame resolution beyond
a threshold has a negligible effect on the DNN/CNN-based
object detection pipelines and often only a small cropped
portion of the frames are used [77], [95]. In addition, sequen-
tial frames in a video stream might not have any additional
information and can be dropped to save bandwidth without
incurring any performance deterioration. Thus, video stream-
ing protocols for future IoT analytics have many parameters
to tune for such as frame selection—area cropping (and trans-
mitting only the cropped area), resolution of the image, and
compression that are relatively unexplored in the existing
video streaming protocols. Similar scope of research lies in
other types of streaming applications such as LiDAR data
streaming and audio streaming.

Humans in the Loop: A key distinguishing feature of IoT
systems is the human in the loop. Humans consume the output
of IoT systems but may also provide inputs to add reliability
and context to IoT systems [92]. While such intervention by
humans in IoT systems has its advantages, modeling and anal-
ysis of these IoT systems require modeling of human behavior.
This is particularly challenging due to the complex physiolog-
ical, psychological, and behavioral aspects of human beings.
Apart from the human modeling aspect, there also exist several
system design challenges, such as minimizing human input
and coping up with occasional unpredictability and unrelia-
bility of human inputs. The set of challenges is even broader
in the context of AR/VR applications for future IoT networks.
Consider a battlefield IoT setting where relevant roadside cam-
era/LiDARs streams are live-fed to the VR headset of ground
troops. The quality of streaming and the switching between
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Fig. 2. Overview of the novel reliability requirements and challenges in IoT systems and foundations from the current work that we can build upon.

different infrastructure sensor feeds heavily rely on the sol-
dier input. The main challenge there is to associate the correct
infrastructure sensors by comparing the live stream from the
infrastructure sensors and the live stream from a head-mounted
camera of the soldier. Such a reliable association requires
a combination of DNN-based pipelines and inputs from the
soldiers and is currently an open area of research.

D. Path Forward

We have to solve the above research challenges through
coordinated optimization of the compute and communication
that is spread out among a diverse set of resources. This will
be helped by the open architecture for IoT that standardizes
sensing and actuation and distributed computation. In all our
solutions, we have to design for humans as first-order entities
interacting with the rest of the system elements.

III. RELIABILITY CHALLENGES

With IoT systems being deployed in critical application
areas, including in those where human safety is at stake, reli-
ability is an important and hitherto rather neglected aspect of
IoT systems. We discuss the unique requirements and chal-
lenges plus the foundations from the current work that we can
build upon. These are schematically shown in Fig. 2.

A. Unique Challenges

As IoT systems have become more than playthings and
are deployed in applications with moderate to high criticality
requirements, they require reliable architecture, operation, and
application development. The reliability must address errors
in the hardware, the software, interactions with the physi-
cal environment, and interactions with the human users. One
development is that the systems generate large volumes of
data, often at high rates, which put new pressure on the reli-
ability mechanism. The data can be of mixed criticality (i.e.,
some of it is critical and if not properly handled, lead to
user-visible failures, while the rest of it is not) and therefore

heterogeneous reliability processing is called for. As intro-
duced earlier, heterogeneity is the first-order feature of our
target systems. This heterogeneity also applies to the relia-
bility area, both in design and operation. For example, some
devices have the software developed through rigorous software
development practices and in programming languages that are
safe by design, while some others may have agile software
development in unsafe programming languages. Furthermore,
due to the runtime instantiation, different devices have differ-
ent capacity for tolerating errors—some component may be
capable of masking errors, while others propagate the errors.
Finally, the real-time aspect of the operation implies that reli-
ability measures cannot perturb the timing too much. While
there is a mature design and development of reliability for
hard real-time systems, our target systems pose new challenges
because they are developed much faster (e.g., with little to no
formal validation) and they operate in more diverse and uncer-
tain environments. Related to the issue of reliability is the
notion of predictable behavior from the system, despite the
presence of multiple unpredictable factors—in the IoT plat-
form, in interactions among the platforms, and in interactions
between the system and the human users. This is important
since the IoT system often has human-in-the-loop or human-
on-the-loop (the former means human has to be involved in the
chain of decision making while the latter makes that optional).
Humans have varying degrees of aversion to uncertainty and
this underlines the need for this aspect of system operation for
IoT systems.

B. Requirements

It is necessary for the reliability protocols to be diverse,
in keeping with the heterogeneity of the runtimes where they
will execute and heterogeneity of the applications that they
are meant to protect. The reliability protocols should be adap-
tive, to the current state of resources on the device (e.g., a
resource-intensive but critical task may start up on the device),
the current reliability requirement (e.g., the current data stream
being gathered, processed, and communicated to the back end
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may be highly critical for some downstream application), and
the current state of the physical environment (e.g., a physi-
cally hazardous environment may cause correlated failures of
multiple devices in spatial proximity).

C. Research Challenges

There are four broad themes in the salient research chal-
lenges that face the reliability of IoT systems.

Handling Correlated Failures: This involves dealing with
failures that are correlated in space and time. Spatial correlation
occurs due to the fact that multiple devices may face similar
physical or cyber environments, such as wireless congestion
or high-temperature fluctuation. Temporal correlation occurs
due to some physical phenomenon spreading with time and
affecting devices serially, such as high moisture content causing
device failures or the coordinated movement of a large mass
of people causing an excessive number of concurrent events.

Handling Unpredictable Failures: A large fraction of fail-
ures are unpredictable in any system. This effect is magnified
in IoT systems due to several factors. First, the energy
resources get drained in an unpredictable manner, say due
to environmental conditions for rechargeable solar battery,
or unanticipated load leading to high communication activ-
ity. Second, an IoT system does not have much headroom
when it is deployed, i.e., there is not much safety factor that
is built into their deployment. So even mildly aberrant condi-
tions, such as small spikes in load, can cause the system to go
into a tailspin leading to failures. Third, there does not exist
as good modeling of the failure modes of these systems, as
for server-class systems.

Debugging Failures: It is important to enable automated
debugging of failures in IoT systems, with the stress on
automation due to the fact that the systems are made of a large
number of heterogeneous devices, which would stress human
cognition for debugging. Automated debugging is challenging
because not all execution data can be logged at the devices
and not all the logged data can be communicated to a back
end for debugging. Furthermore, distributed debugging is often
needed, bringing together traces from multiple devices.

Human Considerations: This reliability challenge arises due
to the human-in-the-loop (or on-the-loop) in many of these IoT
systems. This means different things in different applications
and even different deployments for the same application. For
example, some human users may be highly reluctant to endure
false alarm rates, while some human users may be loathed to
look at alarms on small-form factor displays on devices. A
typical human-centric form of unreliability arises when human
users are distracted while interacting with the systems. The
issue of maintainability is inextricably related to this theme,
whereby it is important that these systems can be maintained
(upgraded, reflashed, reconfigured, etc.) with little to no human
intervention, and hardly any expert intervention.

D. Foundations to Build Upon

For each of the above themes, there is a sparse to moderate
amount of work that is ongoing. We survey some of the most
promising works in each.

First, on the theme of handling correlated failures,
researchers have developed a rich set of methods to detect
faulty sensors and architecture to improve the reliability
of IoT systems. The work in [19] uses the insight that
with correlated failures, elementary detectors will flag many
events almost coincident in time. The authors show that a
single-level ML classifier underperforms for many realistic
system-level faults while having a two-stage detection (clus-
tering events at the first stage) improves the detection and
false-positive rates considerably. To handle space-correlated
failures, Bychkovskiy et al. [21] presented a two-phase
post-deployment calibration technique for large-scale sensors.
The key idea is to use the temporal correlation of sig-
nals in the co-located sensors and maximize the consistency
among the groups of sensor nodes. Balzano and Nowak [12]
proposed whether blind calibration approach for sensor
networks from weakly correlated sensor readings. On the
other hand, focusing on network connectivity, Neumayer and
Modiano [90] developed tools to model and analyze geograph-
ically correlated network failures. As for temporally correlated
failures, Sharma et al. [106] proposed time-series analysis-
based methods to detect faulty sensors. Jeffery et al. [64]
presented a framework, called extensible sensor stream pro-
cessing (ESP), to clean both time and space-correlated sensor
data in the pervasive applications. Apart from space and time-
correlated failure, Szewczyk et al. [114] found that failure of
temperature sensors is highly correlated with the failure of
the humidity sensors in their lessons from a sensor network
expedition. Researchers from the data mining community also
provide valuable analytic models for such co-related sensor
data. Dong et al. [41] considered the dependence between data
sources in truth discovery where the conflicting information
may come from a large number of sources. Although lots of
models have been proposed to clean sensor data, calibrate sen-
sor reading, and detect sensor faults, we have not seen much
work that uses the recent ML approaches for failure detection
with correlations.

Second, on the theme of handling unpredictable failures, a
line of solutions have been applied to energy-harvesting IoT
devices where failure can happen unpredictably due to energy
drain. Some work in this space [79], [122] inserts check-
points in the code to save state that the application can recover
from. Some advanced work [80] does the checkpointing based
on available energy. Lightweight approaches are presented in
some recent studies. Karimi and Kim [66] presented a new
energy scheduling scheme to execute periodic real-time tasks
on the intermittently powered embedded devices. Maeng and
Lucia [81] also presented the adaptive low-overhead schedul-
ing for intermittent execution. However, the open questions
center around how to handle a larger set of unpredictable fail-
ures in a manner that respects the currently available resources
(available storage, energy, etc.).

Third, on the theme of debugging failures, most compelling
works rely on collecting runtime information and deducing
anomalous behavior automatically by mining patterns in the
information. Unfortunately, there is a lack of workable solu-
tions for debugging in-production failures. One promising
direction is record and replay, whereby execution traces are
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Fig. 3. Overview of the novel security requirements and challenges in IoT systems and foundations from the current work that we can build upon.

recorded on the devices when the system is operational and
the traces are somehow brought back to a backend for replay-
ing and debugging. Within the realm of record and replay,
our prior work Tardis [116] was the first software-only record
and replay system for embedded devices. However, it is
only applicable to a single node and does not consider exe-
cution on the commonly used microcontrollers (e.g., those
which run multithreaded OSes and applications). Our work
Aveksha [115] uses extra hardware to record traces from
the JTAG port without interfering with the node’s execu-
tion, but cannot record complete control flows. This and other
approaches, such as Minerva [110] and FlashBox [30] that
use hardware modifications cannot be deployed to COTS IoT
systems. Some software-only efforts, such as TinyTracer [112]
and Prius [113], selectively record some events (only control
flow for TinyTracer) and therefore cannot enable replay-based
debugging. The open questions center around how to provide
high fidelity system-level replay, i.e., replay that is able to
reproduce both control flow at an instruction level and the
state of memory at any point in time for any software module
executing on the node. On the broader theme of uncovering
patterns in the traces, there needs to be learning algorithms
that can learn such patterns from observations in the field.
Such solutions will take the place of current, fragile rule-based
approaches.

Fourth, on the theme of human considerations in reliability,
researchers have developed approaches to create more reli-
able systems and identify failures when an error occurs. As
human operators get involved in the control loop of IoT sen-
sor networks, Gross et al. [50] used a tandem human–machine
cognition approach to mitigate and avoid cognitive overload
situations where false alarms and ambiguity may overwhelm
humans. Humans can also affect the connection between smart
things. Thus, Guo et al. [54] used opportunistic IoT mod-
els to enable information forwarding and dissemination within
the opportunistic IoT communities that are formed based on
the movement of humans. In the context of social IoT appli-
cations and services, Truong et al. [120] developed a trust

service platform with a trust model incorporating both reputa-
tion properties and knowledge-based property so that multiple
entities can trust each other. On the other hand, to identify
potential causes for human failures, Cranor [37] proposed a
framework for reasoning about the human in the loop in the
secure system. However, the open questions include how to
use a unified model to study the human factors in the reliabil-
ity of IoT systems, considering the large variety of humans,
perhaps with ML models.

IV. SECURITY AND PRIVACY CHALLENGES

With the large volume of data generated by sensors and a
large number of heterogeneous IoT devices, some embedded
in our private secure physical spaces, security and privacy pose
new challenges. We discuss each of these individually below.

For context, we should mention that there are some excel-
lent prior works that survey the space of IoT security [6], [46].
However, they take either a subset of the scope of our
work [6] or take a different viewpoint [46]. We now give
two examples of the first case and one of the second. The
work by Alrawi et al. [6] creates a useful systematization
of home-based IoT devices, so that one can reason in a uni-
fied way about their vulnerabilities, attacks, and mitigations.
As another example of a smaller scope, consider the work
by Celik et al. [23], in which they survey program analy-
sis techniques that may be used to improve the security of
the commodity IoT application. Now, as an example of the
second class, the work in [46] takes as a broad view of the
IoT (as we do), touching on consumer-grade, industrial-control
systems, and autonomous vehicles. It is focused on compar-
ing and contrasting to the security protocols in conventional
computing systems.

A. Security

The unique requirements for security in IoT systems along
with the open challenges and foundations to build upon are
shown schematically in Fig. 3.
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1) Unique Challenges: The proliferation of increasingly
connected devices has led to new levels of connectivity and
automation in IoT systems. The connectivity has great poten-
tial to improve our lives, however, it exposes such systems
to network-based attacks on an unprecedented scale. Attacks
against IoT devices have already unleashed massive denial-
of-service attacks [71], given hackers access to streaming
video feeds deep inside the periphery of a corporate IT
network [83], taken control of autonomous vehicles [82], and
facilitated robbing hotel rooms [84]. Currently, these devices
are deployed with no security mitigations against a wide vari-
ety of attacks that are commonly expected in server-class
systems. For example, data execution prevention (DEP) is a
fundamental and widely adopted security primitive in server-
class systems, whereby all writeable memory pages are marked
as nonexecutable—this is often also referred to as the W⊕X
defense [35]. But this relies on special hardware in the CPU
[AMD “NX” bit (no-execute), Intel “XD” bit (executed dis-
able)], which is often not present in IoT CPUs. As another
example, consider address space layout randomization (ASLR)
whereby the memory address layout is randomized from one
instance of an application to another instance of the same
application [16]. The goal is that ASLR prevents attackers
from using the same exploit code effectively against all instan-
tiations of the program containing the same flaw. However,
this relies on a certain degree of randomness such that a
brute-force attack will take a long time to succeed and such
randomness relies on a large memory space [105], which
is often not available on our target systems. When security
defenses are present in IoT systems, mitigations are often
implemented in an ad hoc manner, relying on the developer
to make good security decisions. Therefore, such defenses
are easily bypassable, e.g., by writing a single flag value to
disable all memory protections [32]. We posit that as IoT
devices become ubiquitous, security must become a first-class
principle.

2) Requirements: Security in our target systems must be
able to fit inside the available hardware and software and
must not perturb the timing properties significantly, neither
increasing significantly the mean execution time or even the
variance in it. It must provide a clear separation of concerns
between the application development and the security devel-
opment so that the application developer is not called upon
to make subtle security design decisions. This is challenging
particularly due to the fact that security configuration here
is often application specific. For example, an IO register on
one system may unlock a lock while on a different system,
it may control an LED used for debugging. Clearly, the for-
mer is a security-sensitive operation while the latter is not.
To balance the two factors, such application-specific require-
ments should be supported in a manner that does not require
the developer to make intrusive changes within her applica-
tion code. Finally, and perhaps most importantly, the security
techniques and their instantiations must be easily portable
across different systems. Such portability should apply, say,
within the same vendor’s family of products, e.g., within ARM
M-class microcontrollers, despite the presence of a different

and heterogeneous set of peripherals from one system to the
next.

3) Research Challenges: There are four broad themes in
the research challenges that face the security of IoT systems.

1) Separation of Privileges: IoT devices no longer focus
on a dedicated task but increasingly run multiple inde-
pendent or loosely related tasks. For example, a single
SoC often implements both Bluetooth and WiFi, where
neither Bluetooth nor WiFi needs to access the code and
data of the other. However, without isolation, a single
bug compromises the entire SoC and possibly the entire
system (one demonstration was taking over Android
smartphones through compromising Broadcom’s Wi-Fi
SoC [9]). It is important to bring in the notion of least
privileges or process isolation to the IoT systems. The
first notion refers to the need to grant each software
component the minimum privilege needed to com-
plete its functionality, while the second refers to the
need to protect the control and the data flow from an
unprivileged component affecting a privileged compo-
nent. The research efforts in this theme need to achieve
these while respecting the requirements laid out above.
This is a challenge because the overwhelming majority
of the existing IoT software is written with the assump-
tion that any software module can access any other
software module or hardware block, i.e., there is no
notion of separation of privileges. It is complex to first
identify the different functional software modules (soft-
ware in this domain is often deeply tangled) and then
it is difficult to figure out what is the right set of priv-
ileges to assign to each module. A paramount concern
is not to break the existing functionality and thus avoid
significant porting costs.

2) Effective Use of Hardware Security Features: While
high-end trusted hardware solutions such as Intel SGX
are typically considered not feasible for large-scale
IoT deployments, there are widely used hardware-based
trusted execution environments through features such
as ARM TrustZone. At a more universal level, most
microcontrollers come equipped with a peripheral called
the memory protection unit (MPU) that can enforce
read, write, and execute permissions on regions of the
physical memory. TrustZone is also being pushed down
into lower end devices, such as the ARM Cortex-M
microcontroller series. The challenge is to use such hard-
ware features efficiently and securely. From an efficiency
standpoint, consider that the number of MPU registers
is limited, e.g., the latest generation, ARM Cortex v8-M
processors, have 13 MPU registers. This means that
the security protection granularity has to be appropri-
ately defined at any point in the execution to fit within
these many registers. For the TrustZone-based solutions,
typically, applications have to be rewritten using the par-
ticular API, which imposes a burden, an insurmountable
one at times, for adoption. For security consideration, it
is important for the solution to be such that it cannot
be bypassed by an out-of-band mechanism that simply
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disables the use of the security hardware. For example,
for MPU protection, it can be disabled simply by writing
a 0 to the lowest bit of the MPU_CTRL register, which is
at a fixed (and therefore, known) memory address. For
ARM TrustZone, security challenges arise due to the
desire to share the device among multiple applications.
It is important to guarantee that the isolation among the
applications is preserved even when each makes use of
the TrustZone.

3) Security Testing: Simply verifying the security guar-
antees of these IoT systems is often a challenge in
the face of black-box software packages. Thus, stan-
dard mechanisms for verifying security properties such
as symbolic verification cannot be brought to bear on
IoT software. Today, developers create and test IoT
firmware almost entirely on physical testbeds, typically
consisting of development versions of the target devices.
However, modern software engineering practices that
benefit from a scale, such as test-driven development,
continuous integration, or fuzzing, are challenging or
impractical due to this hardware dependency [89]. In
addition, embedded hardware provides limited introspec-
tion capabilities, including extremely limited numbers
of breakpoints and watchpoints, significantly restricting
the ability to perform dynamic analysis on firmware.
Manufacturing best practices dictate stripping out or dis-
abling debugging ports (e.g., JTAG), meaning that many
off-the-shelf devices remain entirely opaque. Even if the
firmware can be obtained through other means, dynamic
analysis remains challenging due to the complex envi-
ronmental dependencies of the code, such as dependency
on the specific version of a garden variety peripheral
such as an Ethernet card.

4) Secure Integration of IoT into Cloud Services: As there
is an increasing drive to integrate IoT devices into cloud
services, it is essential from a security standpoint to be
able to validate the security properties of the devices,
at startup as well as periodically, say before doing any
critical operation involving these devices. For this, there
are three classes of techniques that need to be developed.
First, is remote authentication whereby any IoT device
being brought online is properly authenticated. This
should stay away from using sources of information that
are low entropy (or equivalently easily guessed), such as
the MAC address (MAC addresses of devices are often
allocated based on the vendor and the high-order bits
are publicly known). The second class of techniques is
remote attestation (RA), which involves verification of
the current internal state (i.e., RAM and/or flash) of an
untrusted remote hardware platform (an IoT device in
our context) by a trusted entity (say, a service running
on the cloud on behalf of an end user). RA will allow
for devices to be compromised, but a remote verification
can uncover the presence of malware or other effects of
such compromise. This has to be done in a way that bal-
ances the resource usage on the device and the security
guarantees (either formal or empirical) that the scheme
can provide. The third class and broader techniques

relate to the use of crypto primitives on these resource-
constrained platforms. It is important that the crypto
primitives fit within the resource budget of the device,
chiefly, memory and energy, but provide rigorously
quantified security guarantees. Only then can higher
level security protocols that integrate these devices with
the cloud be built up. Too often in the past have there
been cases of insecure design or implementation of
crypto primitives for IoT-class of devices, e.g., WEP
for wireless transmissions (insecure design) [22] and car
keyless entry (insecure use of crypto keys) [48]. This is a
particularly pressing research challenge in this domain
because of the ease of eavesdropping on communica-
tion, due to the omnidirectional wireless communication
channel, and the difficulty of upgrading software (includ-
ing crypto software) once devices are deployed in the
field.

4) Foundations to Build Upon: On the theme of separation
of privileges, FreeRTOS-MPU provides privilege separation
between user tasks and kernel task [103]. However, there is a
significant barrier to usability in that the separation has to
be carefully and manually programmed in by the applica-
tion developer. Some other approaches [31], [32], [68] use
static and dynamic analysis to enforce separation of privileges
between different compartments of IoT software allowing a
system owner to enforce the principle of least privileges,
which is a bedrock of security. Such approaches break the
single application into smaller compartments and enforce data
integrity and control-flow integrity between compartments.
Specific open questions are how far can the separation be done
automatically, what is the relative role of static and dynamic
techniques, what is the interplay between performance over-
head and security in any compartmentalization, and how does
a given design overlay on the available hardware features of
the device. It is probably unarguable that we have far to go
for the compartmentalization to reach the level of sophistica-
tion we have on server-class software and systems and work
on all three fronts—programming frameworks, tools for using
such frameworks, and runtime environments—will help us get
there.

On the theme of effective use of hardware root of trust,
techniques such as EPOXY [32] and ACES [31] make it
impossible for the hardware root of trust to be configured
(including bypassed) from any but a small amount of privi-
leged code. For ARM TrustZone compatibility, some solutions
present a sophisticated runtime environment that shields the
applications from the TrustZone API thus ensuring that legacy
applications can be supported [53]. For the secure sharing
of the TrustZone, some solutions have been developed that
provide secure virtualization and isolation among multiple
applications [59]. The broad open question relates to how
much application modification is tolerable—if the modifica-
tion can be templated, then that process can be automated. A
second question relates to the efficiency loss due to the inter-
vening layer that tries to support legacy applications. Also,
since the runtime has not been scrutinized to the extent that
the TrustZone TEE has been, are there security bugs lurking
there?
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Fig. 4. Overview of the novel privacy requirements and challenges in IoT systems and foundations from the current work that we can build upon.

On the theme of security testing, there are several promis-
ing directions that attempt to address one or a few of the
above-mentioned challenges. The promising line of work here
is emulation using the source code were available and binary
blobs for other parts [26], [33], [137]. The source code
is executed either on the actual hardware or a source-level
emulator such as QEMU and the binary blobs are analyzed
through mature binary analysis tools, such as IDA, Ghidra,
or LibMatch and then rehosted on a standard emulator (thus
alleviating the pain point that the actual esoteric version of
a peripheral may not be available during testing). Then, all
standard software testing techniques can be brought to test
the execution on the emulator. These works differ in the layer
of the binary at which they do the analysis (high-level libraries
versus lower level), the fidelity of the analysis (do they give
up when they encounter a binary blob without symbol table
or can they perform approximate analysis), and the depen-
dence on hardware-in-the-loop (what kind of hardware do they
need to execute). The broad open questions that we need to
tackle are how much manual effort is needed in testing IoT
software—is a manual understanding of the black-box binary
blobs needed or can that be replaced with simple input–output
behaviors, do fuzzing and symbolic execution engines need to
be equipped with domain-specific constraints. Another broad
question is does the fact that testing perturbs the timing of the
application change the kinds of bugs that it exposes.

On the theme of secure integration of IoT devices into
cloud-based systems, Chen et al. [28] brought to light ques-
tionable security practices with ten IoT vendors for remote
binding of IoT devices to cloud services, in the designs of
authentication and authorization, including inappropriate use
of device IDs, weak device authentication, and weak cloud-
side access control. It brings forth a fundamental problem
with building authentication from hard-coded device attributes
such as device ID. Such attributes may be leaked through
device ownership transfer, including device reuse, reselling,
stealing, and so forth. One possible approach is to “refresh”
these sources of information through remote reprogramming,
either periodically or based on critical events (such as a change

in location). Such reprogramming can erase the old state or
increase the entropy of the variable being relied on for authen-
tication. However, reprogramming has to be done keeping in
mind the network constraints of latency and bandwidth and
several solutions exist in that space [96]. Several authentica-
tion and authorization platforms for IoT have been built [45],
[119], which differ in the usability, the granularity of the con-
trol, and the kinds of devices they can be run on. Several
schemes for RA have been built [44], [61], [93], which differ
in what kinds of devices they are targeted at (very low-end
TI MSP430 class or higher end ARM R-class), are they hard-
ware based (such as using TrustZone), software based (i.e.,
based on timing properties), or hybrid, and how formally they
have been modeled and verified. The broad open question is
how best to combine secure protocols for bringing devices
online and remotely managing them including detecting com-
promise or verifying their integrity. This has to be done while
ensuring that any crypto primitive being relied on has enough
entropy to be able to withstand cryptanalysis attacks for the
required duration of time (the time duration itself may be very
application dependent).

B. Privacy

Privacy is another important topic since IoT devices are
embedded in our physical spaces including privacy-sensitive
locations. The unique challenges for privacy in this domain,
along with the open challenges and the foundations to build
upon are schematically shown in Fig. 4.

1) Unique Challenges: As IoT devices become more per-
vasive, they have begun to collect data about our environment,
our homes, our health, and many other aspects of our lives.
This data may contain sensitive or private information that
needs to be safeguarded from the user’s perspective. As an
example, consider smart voice assistants that listen for spoken
commands or smart cameras that continuously view our home
environment. Safeguarding the privacy of IoT data raises new
challenges that go beyond traditional data privacy challenges.

The issue has become important due to the proliferation of
consumer IoT products that range from smart outlets, smart
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door locks, thermostats, cameras, fitness bands, voice assis-
tants, object trackers, and many more. Unfortunately, many of
these products are designed to provide convenience to users
(e.g., remote operation) but often pay little attention to user
privacy.

As has been noted earlier, the current generation of con-
sumer IoT products uses a cloud-based architecture where
data generated by the device are sent to the cloud for pro-
cessing [27]. The cloud service can then run any analytics on
this data to derive insights for the user. In effect, the user no
longer has full control over this data and it is possible for the
cloud provider or third parties to mine this data for private
information.

2) Requirements: Privacy researchers have proposed data
obfuscation as a possible approach to ensure the privacy of
user data in the cloud [85], [129]. Data obfuscation involves
transforming the data by adding noise to it prior to transmit-
ting it to the cloud. While obfuscation methods can ensure
better privacy, they are a blunt instrument. The transformed
data reveals nothing after obfuscation and is no longer useful
for performing cloud analytics. That is, obfuscation removes
all information embedded in the data, both private and non-
private. Hence, privacy-preserving techniques for IoT data
need to carefully consider what type of private and nonpri-
vate information is present in the data and determine how to
mask private information without hampering the ability to per-
form useful analytics on the data. Furthermore, allowing users
greater control over their privacy is a key design requirement.

3) Research Challenges:
a) Privacy-preserving architectures: While the current

IoT devices rely on a cloud-based architecture, researchers
have begun to study new architectures that have better privacy
properties [51], [52]. For instance, “cloudless” architectures
that process all IoT data on the device itself or an edge
device located on customer premises are emerging. These new
architectures are becoming feasible due to the rapid hard-
ware advantages that have resulted in specialized chips (e.g.,
Apple’s neural engine [3] and Intel’s Movidius VPU [1]) that
allow sophisticated computation to be performed on low-end
hardware. For instance, such chips have allowed some secu-
rity cameras to perform face recognition on-device and without
sending video data to the cloud. A key advantage of such archi-
tectures is that the data are retained by the user and stays on
user premises where it is processed locally. Thus, third parties
do not have access to the data and can no longer mine it for
sensitive information.

b) Privacy-preserving integration into cloud services:
The previous section described challenges in the secure inte-
gration of IoT into cloud services. Security and privacy are
related but distinct challenges. Even with secure cloud inte-
gration, IoT services do not necessarily provide privacy. This
is because cloud analytics on secure IoT data can still leak
private user information.

Consequently, privacy-preserving techniques are needed in
addition to security techniques for cloud-based IoT services.
Some works have attempted to develop novel cloud-based
architectures and integration techniques that preserve IoT pri-
vacy [47], [63]. The main challenge is to design techniques that

thwart side-channel attacks. Side-channel attacks essentially
mine or infer orthogonal information from the original pur-
pose for which the data were collected. For instance, electricity
usage data recorded by electric meters are known to reveal
occupancy information based on periods of higher usage, a
type of side-channel attack [70]. The problem is especially
challenging since it is a priori unclear what kind of other
information may be hidden within the data gathered for a
specific purpose. Conventional techniques such as differen-
tial privacy often do not apply since we are concerned with
masking private information from a single data stream.

c) Cryptographic techniques for IoT privacy: Analogous
to crypto-based security methods, researchers have developed
cryptographic primitives for ensuring privacy when transmit-
ting data to cloud services [38]. One such approach leverages
zero-knowledge cryptography (ZKC), where the IoT device
sends a cryptographic proof to the cloud server rather than
the raw data [88]. Such a proof, known as zero-knowledge
proof, allows the server to verify that the result was derived
from valid data. However, each ZK proof is based on a specific
query and general methods that allow for a broad set of ana-
lytic queries to be performed with ZKC in the IoT context
remains an open challenge.

d) Utility-preserving data transformation: An alternate
approach to ZKC is to employ intelligent data transforma-
tion on the data prior to transmitting it to the cloud. Unlike
obfuscation-based methods that leave no useful information
in the data, utility-preserving privacy transformation seeks to
mask any type of private information in the data while leaving
other nonprivate information intact. Doing so allows conven-
tional analytics in the cloud to be performed like before,
but prevents side-channel attacks that try to extract private
information from the data. Such utility-preserving privacy
transformation is more challenging than data obfuscation since
they need to selectively mask only information considered to
be private. The existing methods such as differential privacy
are useful on multiuser data [43]. However, since analyzing
single-user streams is more prominent in the IoT context, novel
utility-preserving techniques are required.

Utility-preserving privacy also raises an interesting trade-
off between utility and privacy. The more information that
is masked in the data, the less useful it becomes (obfusca-
tion can be considered to be an extreme case that masks all
information). Thus, it is important to consider user prefer-
ences when designing such systems and let the user decide
what information to suppress and what to reveal to a cloud
service. For instance, Zheng et al. [143] used semistructured
interviews with smart home owners to understand their rea-
sons for purchasing IoT devices, perceptions of smart home
privacy risks, and actions taken to protect their device and data
privacy. This is as much of an HCI challenge as a technical
one since explaining privacy implications to users to choose
the appropriate preferences is a nontrivial issue.

e) Privacy-preserving ML: There has been a growing
use of ML in the IoT domain. From using a long short-term
memory (LSTM) model on smart watch data to detect medical
conditions, such as diabetes and high blood pressure [11] to
detecting Distributed Denial-of-Service (DDoS) attacks in IoT
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traffic using random forests [42], researchers are employing
advanced ML methods to improve the usability of IoT devices.

However, the popularity of ML with IoT data raises a
fresh set of privacy concerns. Adversaries with IoT data can
employ ML methods to infer private information that may
be implicit in the data. For instance, prior work has demon-
strated that it is feasible to disaggregate energy usage from
smart energy meters into individual components, popularly
known as nonintrusive load monitoring (NILM), using a fac-
torial hidden Markov model (FHMM) [14], [69]. This type
of disaggregation directly reveals the daily activity patterns of
users. Privacy attacks are also possible on trained ML models.
Two such popular attacks are membership inference, where
an adversary attempts to infer whether a user was part of
the training data, and model inversion, where an adversary
attempts to infer sensitive features in the training data via
model output. Recent work has shown that membership infer-
ence attacks can be conducted on aggregate location data from
smart services [98]. Model inversion attacks pose a higher con-
cern from an IoT perspective where distributed ML models can
be reverse engineered to gain sensitive local information.

These issues raise an overriding question: how can we use
ML to improve the usability of IoT devices while preserving
privacy? Designing ML models that are privacy-preserving and
are robust to model-based attacks in an IoT context is thus a
pressing open area of research.

4) Foundations to Build Upon: Edge computing will be
a major foundation for future privacy-preserving architec-
tures and privacy-preserving cloud integration. As computation
and storage on distributed edge clusters advances, edge-based
architectures will gain prominence and cloud integration will
involve more aggregate and/or processed data. Lightweight
crypto primitives will serve as a foundation for resource-
bounded, privacy-preserving cryptography methods for IoT.

Though blunt, data obfuscation methods provide a reasonable
foundation toward utility-preserving privacy for cloud-based
architectures. Building on data obfuscation methods to mask
only private features is an open research direction. Some work
has demonstrated success in masking private data in the energy
domain [24], [25], [70]. Recent work has employed Metropolis-
Hasting statistical sampling to transform data from smart energy
meters to suppress private user information while retaining non-
private information [18]. Such methods can be used toward
developing more general utility-preserving techniques. Recent
work in federated learning, an ML technique that allows decen-
tralized training on edge devices, has demonstrated possibilities
for privacy-preserving ML in the IoT domain [62], [65], [73],
[78], [104], [135], [141]. Federated learning-based methods
will gain prominence in analyzing IoT data as edge computing
and distributed learning advances. Another promising approach
is the combination of traditional differential privacy methods
with ML to protect aggregate user data [74], [126], [127].

C. Path Forward

Reliability and security have quickly become important for
IoT systems as they are being used in applications where
human health or safety or large financial gains/losses are at

stake. Privacy is a unique challenge here as IoT systems are
embedded in our physical spaces and interact with us through
multiple modalities (speech, vision, touch, etc.). We want to
make the research and development of these as first-order con-
cerns. Their design and development must be enabled in a way
that the application developer does not also have to become
an expert in them, but rather clean usable interfaces allow
understanding and configuration of these building blocks. In
terms of these building blocks, they have to be designed and
developed in a way that they are usable, fit within the resource
constraints of the devices and the network, and meet the
application-specific goals to different and configurable levels
of fidelity.

V. DISCUSSION AND TAKE-AWAYS

IoT systems serve applications that fall under three broad
categories: 1) applications that enhance our physical spaces
(homes and offices); 2) applications that empower the devices
we use (e.g., appliances and vehicles); and 3) applications
that enhance the efficiency of production and delivery systems
(e.g., food production, manufacturing, and energy delivery).
These applications are demanding IoT systems that are simul-
taneously high performing, secure, and reliable. IoT systems
are distributed, putting more emphasis on end-to-end systems
challenges, scalability, and network support, as opposed to,
say, control systems or embedded systems. Also, IoT systems,
by virtue of distribution and scale, are often multipurpose and
heterogeneous and involve humans in the loop. Each of these
leads to unique challenges in systems and networking.

There are a host of promising solutions that are being
developed and with a growing pace of innovations. These
include edge-cloud offload and on-device computation, model
reduction and efficient model inferencing, 5G and networking
software innovations (such as network function virtualization),
and human-in-the-loop design. These need to be targeted to the
unique requirements focused to work within the constraints,
and provide the appropriate interfaces for the human users.

While developing these solutions, reliability, security, and
privacy have to be built into these solutions as first-class primi-
tives. Here also, there are a host of domain-specific challenges.
In the area of reliability, promising solutions arise from tech-
niques for dealing with temporally and spatially correlated
failures, intermittent computation, debugging in-production
failures, discerning failure patterns by mining failure data,
and models for human–machine interaction and human cog-
nition. These have to be focused to handle correlated and
unpredictable failures (including those due to the close cou-
pling of the devices with the physical environment), debugging
large-scale production failures, and reliability bottlenecks due
to humans in the loop. In the area of security, several exist-
ing solution approaches can be leveraged and many of these
are under active development now. These include efficient
use of hardware root of trust, enforcement of least privi-
lege and process isolation, remote authentication, lightweight
crypto primitives, and security fuzzing for uncovering vul-
nerabilities. These need to be further developed to reach the
goals—allow IoT devices to be securely integrated into the
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cloud infrastructure, allow separation of concerns in software
development between security and application functionality,
and enforce security containment boundaries. These have to
be achieved even though hardware features that we rely on
in the server world, such as memory management units, are
often not present here.

Privacy is a particularly important concern since IoT devices
are embedded in our physical spaces including in privacy-
sensitive locations. Data obfuscation, on-premises processing
of IoT data, and privacy-preserving ML are important building
blocks for reaching the goals of privacy. These raise an over-
riding question: How can we use ML to improve the usability
of IoT devices while preserving privacy? Designing ML mod-
els that are privacy-preserving and are robust to model-based
attacks in an IoT context is thus a pressing open area of
research.

In summary, this is an exciting time to be working in IoT, in
its systems, network, reliability, security, or privacy areas. We
see a slew of energizing technical challenges and a mounting
set of compelling solutions, with many more to come in the
near future.
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