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Abstract

Several methods have been developed that combine mul-

tiple models learned on different data sets and then use

that combination to reach conclusions that would not

have been possible with any one of the models alone. We

examine one such method—effect restoration—which was

originally developed to mitigate the effects of poorly mea-

sured confounding variables in a causal model. We show

how effect restoration can be used to combine results from

different machine learning models and how the combined

model can be used to estimate causal effects that are not

identifiable from either of the original studies alone. We

characterize the performance of effect restoration by using

both theoretical analysis and simulation studies. Specif-

ically, we show how conditional independence tests and

common assumptions can help distinguish when effect

restoration should and should not be applied, and we use

empirical analysis to show the limited range of conditions

under which effect restoration should be applied in prac-

tical situations.

1 Introduction

Growing use of machine learning has led to an interest
in combining models learned on different data sets
and using those models to make inferences that would
not have been possible with any one model. This is
particularly valuable when the goal is causal inference
[17,20], one of the most challenging tasks in machine
learning. For example, researchers in statistics have
long used meta-analysis to produce causal estimates
with statistical power that exceeds any individual
study [9]. Researchers in causal graphical models
have taken a very different approach and studied how
to learn a single model from multiple data sets with
overlapping sets of variables [23].

In this paper, we use models learned on multi-
ple data sets to correct for confounding variables,
perhaps the most common threat to the validity of
causal inferences. Ignoring confounding variables in-
troduces bias in estimates of treatment effect [17,20],
and conditioning on confounding variables is a com-
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mon approach to correct this bias. We study how to
accurately condition on confounding variables even
when those variables are not accurately measured in
a data set.

Specifically, we examine how models learned from
a second data set can be used to recover or restore
a confounding variable and thus reduce the bias
of the first study’s estimate of causal effect. To
do this, we apply effect restoration, a technique
originally proposed by Kuroki & Pearl [8] to adjust
for measurement error in confounding variables. We
show that the models necessary to implement this
method can be drawn from different data sets and
that, under specific conditions, such models can
greatly reduce the bias of causal estimates.

For example, consider the graphical model in
Fig. 1b. One data set contains a treatment X, an
outcome Y , and another variable W . Both X and
Y are caused by an unmeasured confounder U that
also causes W . A second data set contains both U
and W . Effect restoration can be used to combine
the studies, restoring the effect of U on X and Y by
using knowledge of P (U,W ) from the second study.
When the underlying graphical structure in Fig. 1b is
assumed and the two studies draw data from similar
distributions, effect restoration will reduce the bias
due to the unmeasured confounder in the first study.

This application of effect restoration is relatively
straightforward, and the theoretical properties of ef-
fect restoration established by Kuroki & Pearl also
hold in this particular application. However, much
remains unknown about the practical utility of the
proposed methods. First, it is far from straightfor-
ward to conclude that the assumed structure holds
for a specific combination of treatment, outcome, and
potential confounders. Second, it is unclear whether
the adjustment made by effect restoration still pro-
vides a bias-free estimate when the underlying gener-
ative process does not correspond to the structure in
Fig. 1b, a question Kuroki & Pearl considered out-of-
the scope in their study. Finally, the range of poten-
tial benefits and the conditions under those benefits
occur have not been previously examined.

In this paper, we extend the use cases of effect
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Figure 1: Graphical models with confounding. In (a),
U is a confounder for treatment (X) and outcome
(Y ). In (b), one study (shown in black) contains
measured variablesX, Y , and W , and an unmeasured
confounder U , and a second study (shown in gray)
contains measured variables U and W .

restoration and characterize its behaviour under var-
ious realistic scenarios. Specifically:

RQ1. How does the actual causal structure affect the
accuracy of effect restoration?

RQ2. Practically, what conditions are necessary for
effect restoration to substantially improve es-
timates of causal effect?

RQ3. For a given set of observations, X, Y , and W ,
what are the sufficient conditions to identify
the underlying graphical structure?

Our answers to these questions make important
contributions to the understanding of effect restora-
tion. First, we show that most variants of the struc-
ture assumed in the original work on effect restora-
tion lead the method to either have no effect or to
harm estimates of the causal effect of treatment on
outcome. Second, we use empirical analysis to show
that the relative benefit of effect restoration is high-
est for estimating small treatment effects with large
confounding bias. By using empirical data from a
real-world randomized experiment, we show how ef-
fect restoration removes bias more than its natural
alternatives. Third, by leveraging graphical models
and d -separation, we show for the first time that sim-
ple rules and typical temporal ordering assumptions
are sufficient to identify whether an empirical system
has the causal structure necessary for effect restora-
tion to improve causal estimates.

2 Related Work

A wide variety of methods for estimating causal
effects assume that all confounders are observed.
This assumption, sometimes referred to as causal
sufficiency [20], implies that all variables that are
causes of two or more observed variables in a given
data set are also observed. Causal sufficiency is

typically required to guarantee consistent and/or
unbiased causal estimates [5, 18,22].

We explore the use of effect restoration to account
for bias from unobserved confounder variables. Apart
from randomized experiments, several methods have
been proposed to account for unobserved confounders
in non-experimental contexts. These include instru-
mental variable designs [1], which can produce unbi-
ased estimates of causal effect under some very re-
strictive assumptions, as well as sensitivity analysis
techniques, which are used to assess the likelihood of
the existence of a potential unobserved confounder
by estimating the required confounding bias to re-
verse the estimated effect [10]. In contrast, our work
accounts for unobserved confounders by using models
of confounders derived from a separate data set.

Our approach resembles transfer learning ap-
proaches in machine learning where a target learning
task is performed by using knowledge obtained from
previous related tasks [11, 12, 15, 25]. Our study de-
parts from the standard transfer learning paradigm
because we first obtain knowledge from a predictive
learning task and then use such knowledge for a sub-
sequent causal estimation task.

3 Background

To formalize the problem of effect restoration, we use
graphical models and Pearl’s do-calculus [17]. For ex-
ample, in the graphical model shown in Fig. 1a, we
denote the direct effect of X on Y as P (Y |do(X)). In
observational studies, this quantity is different than
simply conditioning on X (i.e., P (Y |X)). Condition-
ing denotes the probability distribution of Y in each
possible world defined by a specific X value. How-
ever, the do operator denotes the probability distri-
bution of Y after actively setting the value of X (i.e.,
intervention). Hence P (Y | do(X)) represents the ef-
fect of manipulating the values of X and P (Y |X) rep-
resents passive observation. Readers should consult
Pearl [17] for additional discussion of the do-calculus.

For the graphical model in Fig. 1a, when all vari-
ables are observed and under identifiability condi-
tions (again, see Pearl [17] for details), the probability
P (Y | do(X)) can be estimated [8]:

(3.1) P (Y | do(X = x)) =
∑
U

P (X,Y, U)

P (X | U)

Given this interventional distribution, for a binary
X, the treatment effect (TE) of X on Y can be
calculated (note that Y1 is equal to Y = 1 and the
former format is chosen for all variables for brevity):

TE = log

(
P (Y1 | do(X1))

P (Y0 | do(X1))

)
− log

(
P (Y1 | do(X0))

P (Y0 | do(X0))

)
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Figure 2: Bias and Variance Results for Different Underlying Structures.

Table 1: Conditional (In)dependence Relationships for All Simple Graphical Structures.

U is temporally prior to X and Y U is temporally posterior to X or Y Cycle
A B C D E F G H I

X ⊥⊥ Y 6 6 6 6 6 6 6 6 N/A
X ⊥⊥ Y |W 6 6 6 6 6 6 6 6 N/A
X ⊥⊥W 6 4 6 4 6 6 6 6 N/A
X ⊥⊥W |Y 6 6 6 4 6 4 6 6 N/A
Y ⊥⊥W 6 6 6 4 6 6 6 6 N/A
Y ⊥⊥W |X 6 6 4 4 6 6 4 6 N/A

Table 2: Effect of Activity Level on Weight Gain

Weight Gain
Activity Level 0 1

0 0.20 0.80
1 0.60 0.40

From perfect observations of X, Y , and U , un-
biased estimates of TE can be obtained using vari-
ous modeling methods. However, these methods fail
to provide unbiased estimates if U is measured with
error. Kuroki & Pearl used the do-calculus to ad-
just for confounding variables with measurement er-

ror [8]. Specifically, the adjustment uses knowledge
of the error distribution to correct the causal esti-
mate made using the observed values. Fig. 1b shows
the graphical model assumed in their extended frame-
work. They propose that, under certain conditions,
the TE of X on Y can be restored bias-free given an
observed surrogate variable for the confounder U (i.e.,
W ) and a known error distribution (i.e., P (W | U)).

Our experiments use a specific formulation of
the Kuroki & Pearl TE estimator with the do-
calculus framework. For example, when estimating
the effect of activity level (X) on weight gain (Y ),
age (U) is a potential confounding variable because
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it affects both activity level and weight gain. Our
goal is to estimate the interventional distribution of
P (WeightGain | do(ActivityLevel)).

Assume the distribution shown in Table 2. Ac-
cording to this distribution, when a person has low
activity level, the odds of weight gain is 0.80

0.20 = 4.
Whereas, when a person has high activity level, the
odds of weight gain is 0.40

0.60 = 0.66. We define the dif-
ference in the log-odds ratio for different treatment
values as the causal effect of treatment (e.g., activity
level) on outcome (e.g., weight gain).

4 Effects of Underlying Structure on Bias
and Variance

The effect restoration method proposed by Kuroki &
Pearl assumes U is a confounder as shown in Fig. 1b.
Here, we relax this assumption and characterize the
performance of effect restoration under all possible
modifications of the simple graphical structure sug-
gested in the original paper.

Fig. 2 shows all possible modified structures
between X, Y , W , and U with the assumptions
that are typical in many social science and medical
studies [5, 17, 22]: (1) X is temporally prior to
Y ; (2) W is a noisy measurement of U ; and (3)
U is temporally prior to X and Y . We employ
simulation studies to characterize the performance of
effect restoration for each graphical model structure.

4.1 Data Generation We generated continuous
and discrete synthetic data consistent with the graph-
ical structures in Fig. 2. We explain the discrete data
generation process for the graphical structure shown
in column A of the figure. Other graphical struc-
tures follow the same steps except that the added, re-
moved, or reversed dependencies in the structure en-
tail adding, removing, or changing the order of steps
in the data generation process, respectively.

In the generative processes below, italic letters
denote scalar values (e.g., N ); upper-case bold char-
acters denote vectors (e.g., W); each element of a
vector is accessed by an index subscript (e.g., wi);
correlations between variables are referred with sub-
scripts such as ρuw denoting the correlation between
U and W; marginal and conditional probabilities are
denoted by the upper-case letter P. Following is the
pseudocode to generate binary data for the structure
in column A in Fig. 2.

We vary ρuw, ρux, ρuy and ρxy between (0,1).
We model P (Y | U,X) as a noisy-OR conditional
probability distribution [6] where:

P (Y = 0 |U,X) = (1− λ0) ∗ (1− ρuy)U ∗ (1− ρxy)X

P (Y = 1 |U,X) = 1− (1− λ0) ∗ (1− ρuy)U ∗ (1− ρxy)X

Algorithm 1 Binary Data Generator

Initialize correlation values ρuw, ρuy, ρux, ρxy
Draw prior Pu ∼ Uniform(0, 1)
Draw N values for U from Bernoulli(Pu)
for ui in U do

Draw p′ ∼ Uniform(0, 1)
if p′ < ρuw then
wi = ui

else
Draw a value for wi ∼ Bernoulli(p = 0.5)

for ui in U do
Draw p′ ∼ Uniform(0, 1)
if p′ < ρux then
xi = ui

else
Draw a value for xi ∼ Bernoulli(p = 0.5)

Draw Y ∼ Binomial(N,P (Y = 1 |U,X))

We set the value of λ0 = 0.01 as the noise pa-
rameter of the noisy-OR model. The noisy-OR model
is a popular choice to represent discrete conditional
probability distributions [16] due to its compact rep-
resentation with few parameters and its ability to ap-
proximate many learned distributions [26].

For each parameter setting {ρuw, ρuy, ρux, ρxy},
we generate 50 data sets, each containing 10,000 in-
stances. As noted, for other graphical structures we
revise the data generation process for the correspond-
ing removed dependence. For example, in Fig. 2 col-
umn B, the dependence between U and X is removed.
To account for this, we sample a prior for PX from
a uniform distribution; we sample values for X using
the prior instead of using P (X | U).

In our experiments, we calculate the true treat-
ment effect (i.e., TE) as our ground truth by using the
values of U . We estimate the treatment effect (i.e.,
TE’) with the following three approaches: (1) Ignore
W: Simply ignoring the measurements of W , (2) Ig-
nore measurement error: Using W and ignoring
the measurement error, and (3) Effect restoration:
Using W and adjusting for the measurement error.
Note that these three methods do not use values of
U , only use values of X, Y , and W . We measure the
standard deviation of error values across experiments
and the lines correspond to the mean standard devi-
ation for varying strength of effect values between
U and W . We measure the bias for each approach
in each experiment by normalized error, as shown
in equation 4.2 and the lines correspond to the local
weighted regression of bias values for varying strength
of effect between U and W .

(4.2) ε =
TE − TE′

TE
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Figure 3: Bias as Treatment and Confounding Effect
Change.

4.2 Bias and Variance for Different Underly-
ing Structures We perform simulation analysis for
each graphical structure in the first row of Fig. 2.
We plot both the variance and the bias in estimating
the treatment effect in the second and third row, re-
spectively. In each plot, we show the behaviour for
each of the three different approaches as the mea-
surement error changes along the x-axis. We calcu-
late the measurement error by the strength of de-
pendence between U and W using the Cramér’s V
coefficient. The stronger the dependence, the weaker
the measurement error. On the y-axis we plot locally
smoothed normalized absolute error for bias and lo-
cally smoothed standard deviation for the variance
for the three different approaches. Fig. 2 shows the
results for a fixed treatment and confounding effect
for all graphical structures considered.

When the confounding variable is simply ignored
for the graphical model in the first column in Fig. 2,
unsurprisingly, we see a constant bias in our estimate
of the treatment effect. However, when values of
W are used as if they are the perfect observations
of U (i.e., when the measurement error is ignored),
the bias in treatment effect estimate is reduced.
This reduction is particularly significant when W is
highly correlated with U (i.e., measurement error is
small). Finally, when values of W are used with the
effect restoration adjustment, the bias is consistently
reduced more than the other approaches.

Furthermore, the smaller the measurement error

between W and U , the smaller the bias in estimation.
Also, the larger the measurement error, the more the
relative benefit of explicitly adjusting for it using ef-
fect restoration versus simply ignoring it. However,
when U and W are poorly correlated (i.e., measure-
ment error is high), applying effect restoration comes
with the cost of increased variance, as shown in the
second row in Fig. 2.

For the other graphical models in Fig. 2 columns
B, C, D, we observe that ignoring or using W directly
provide consistent estimates for the treatment effect.
However, simply applying effect restoration might in-
crease bias as well as variance. Hence, applying effect
restoration regardless of the underlying structure can
result in an incorrect estimate.

We perform additional experiments for the
graphical model in column A by changing the values
of treatment and confounding effect via modifying
the correlation coefficient. Fig. 3 shows the results of
our experiments. In these plots, the treatment effect
increases along the big y-axis and confounding effect
increases along the big x-axis. Along the x-axis in
each plot, the strength of effect between U and W in-
creases. These results suggest that effect restoration
is most effective when the treatment effect is small
and the confounding effect is high.

5 Detecting the Underlying Structure

In the previous section, we presented empirical ev-
idence that when the underlying structure deviates
from the confounding variable case, the adjustment
provided by effect restoration can increase bias and
variance. This raises a natural question: Can we de-
tect when to apply effect restoration? Instead of as-
suming that the confounding bias exists, we propose
to verify if it exists by using d-separation and typical
temporal ordering constraints on the variables.

Note that U may or may not be a confounding
variable for X and Y . Our goal is to identify sufficient
conditions to determine if U is a confounding variable
and only apply effect restoration when it is.

In Table 1, we list all possible underlying struc-
tures with variables X, Y , W , and U that satisfy the
stated assumptions 1 and 2 in Section 4. There are
nine possible graphical structures. We individually
account for dependence and independence relation-
ships in each of them. One of the possible structures
contains a cycle (i.e., the structure in the last column
of Table 1 is not a DAG) and hence out of scope for
our discussion. In four of these structures, U is tem-
porally prior to X and Y (i.e., columns A through
D). In the remaining four structures, U is temporally
posterior to X and Y (i.e., columns E to H.) In the
rows of Table 1, for each graphical model, we list
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(a) Relationships Between

Indexing, Disk Reads, and

Cache Hits. System.

(b) Bias in the Estimated

Effect of Cache Hits on

Disk Reads.

Figure 4: Effect Restoration on PostgreSQL Data.

all the marginal and conditional independence rela-
tions between X, Y , and W . Columns of the table
correspond to possible underlying graphical models.
Each column vector corresponds to the expected con-
ditional dependence and independence relations for
the corresponding graphical model.

First, we note that many of these graphical struc-
tures are identifiable based on empirically testable
conditional independence relations (i.e., structures in
columns B, D, and F in Table 1) assuming accurate
conditional independence tests. However, some struc-
tures are indistinguishable with the given set of con-
ditional independence relations (e.g., structures in A,
E, and H share the same set of conditional indepen-
dence relations).

Second, if we also make a common assumption
that covariates are measured pre-treatment [24], then
only the structures in columns of A, B, C, and D will
be possible. Furthermore, conditional independence
relations would be sufficient to distinguish among
each of these graphical models.

Thus, a combination of common temporal as-
sumptions and conditional independence relations are
sufficient to determine the underlying graphical struc-
ture from X, Y , and W .

Finally, we note that two of the structures pos-
sible when those common temporal assumptions are
not made introduce significant bias to causal esti-
mates if effect restoration is applied. Applying effect
restoration to structure E will remove one pathway
for causal effect and thus (typically) underestimate
the total effect of do(X). Applying effect restora-
tion to structure H will induce dependence between
X and Y even if there exists no direct causal depen-
dence between these variables. This classic example
of conditioning on the descendant of a collider would
(typically) overestimate the total effect of do(X).

6 Empirical Evaluation of Effect Restoration

In this section, we empirically evaluate the perfor-
mance of effect restoration in real-world settings as
well as demonstrate how effect restoration can be
used to combine results from different machine learn-
ing models to estimate causal effects.

6.1 Effect Restoration in Real Data We first
evaluate the performance of effect restoration on
experimental data obtained from real-world settings.
We use the experimental data compiled by Garant
and Jensen [4] about the effects of interventions on
large-scale software systems.

Specifically, we use their experimental data set
about PostgreSQL, a large open-source relational
database management system. The authors ran
over 11, 000 queries under each of eight different
system configurations. This creates a nearly ideal
data set for causal estimation because each subject
(i.e., query) is observed in each treatment condition
(i.e., configuration setting). This approach allows
direct interventional estimates of the effect of a
treatment on outcome variables in the context of
other variables representing characteristics of queries
and intermediate states of the database server.

The authors then use GES, a score-based algo-
rithm for structure learning [2], to recover the un-
derlying structure for the PostgreSQL domain. From
their partially learned graphical structure, we focus
on specific regions in which the sub-structures satisfy
the effect restoration conditions as shown in Table 1.

We identify two cases in which we can apply effect
restoration. One is shown in Fig. 4a and represents
the relationships between indexing (whether indexes
are available), disk reads (the level of disk reads),
and cache hits (the level of cache hits). Generally
speaking, indexing affects both disk reads and cache
hits. Indexing reduces the disk reads (i.e., a result of
a query can be retrieved with fewer block reads) and
increases the cache hits. Fig. 4a shows the cache hits
as a cause of disk reads. The authors note that the
direction of this edge between disk reads and cache
hits might also be in the opposite direction. In our
analysis, we separately analyzed graphical structures
in both directions and the results for effect restoration
were similar in both.

For simplicity, we converted each variable to a
binary variable by using the median value of each
variable as a threshold. Our goal is to estimate the
effect of cache hits on disk reads under noisy mea-
surements of indexing. To obtain such noisy measure-
ments, we manually added noise to the values of in-
dexing to obtain indexing’ by sometimes ignoring the
conditional dependence between its true values and
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Figure 5: Effect Restoration for Unobserved Variables in Synthetic Data.

randomly assigning values as controlled by a noise pa-
rameter. Then we use these noisy measurements to
adjust for the confounding bias of indexing. As in our
prior experiments, we compare three approaches: (1)
Ignoring the values of noisy measurements for index-
ing, (2) Using the values of indexing, ignoring that
they are noisy, (3) Using the values by correcting for
the noise in their measurements. We calculate the
true effect by using the true values of indexing.

In Fig. 4b, we plot the normalized error in the
estimated treatment effect with respect to measure-
ment error in indexing. As with our results on simu-
lated data, estimation with effect restoration provides
significantly smaller bias than alternatives. In addi-
tion, as the measurement error of the confounding
variable increases (i.e., the strength of effect between
U and W decreases), the relative benefit of applying
effect restoration increases over simply ignoring the
measurement error.

6.2 Effect Restoration with Predictive Mod-
els Conditioning on a confounding variable by using
noisy measurements can also be thought of condition-
ing on an unobserved variable when both its predic-
tions and the error distribution of estimations can
be inferred using an independent estimation process.
For example, assume we want to estimate the effect
of activity level on weight gain. Assume age is a con-
founding variable (i.e., age causes both activity level
and weight gain) and that it is unobserved for the
population of interest. Clearly, in this example, we
need to adjust for the effects of age to get an unbi-
ased estimate. One idea is to estimate age by using
other observables for the subjects under study. For
example, such observables can be based on users’ so-
cial media content [13], links on social networks [27],
first names [14], or names with personal images [3].

We can use the predictions of the model as noisy
measurements of age and, given its error distribution,
adjust for its confounding bias. This idea assumes

that the population under study is similar to the
population from which the predictive model was
estimated so that we can transfer the knowledge of
that model to obtain the corresponding predictions
and error distribution. This assumption, referred to
as external validity or transportability, is common to
nearly all statistical modeling.

6.2.1 Empirical Results on Synthetic Data
We evaluate the idea of using predictive models
for effect restoration by constructing a scenario in
which we observe activity levels, and weight gain
recordings of a population along with their first
names. Although one can use more complicated
models for predicting age, here we use the model
described by Oktay et al. [14] because of its simplicity.

In our experiments, we generate synthetic data
for each subject with activity levels, weight gain, and
a first name. We then use the first names to infer
an age value for each subject. Finally, we use the
inferred age values along with the corresponding error
distribution as reported by Oktay et al. [14] to adjust
for the confounding effect of age.

One might suggest that instead of using a model
to estimate age, we could simply condition on the
values of first names. There are three reasons to
avoid this approach. First, the number of possible
first names is large and using first names directly
can lead to a high-variance estimator of causal effect
for most data sets. Second, conditioning on first
names leaves the back-door path unblocked between
activity levels and weight gain, as shown in Fig. 5
(see Pearl [17] for a detailed discussion of back-
door paths). This implies that the confounding bias
would still exist. Third, our proposal is to plug in
any predictive model for the unobserved confounder,
and such models can use many independent variables
rather than just one. Again, conditioning on many
independent variables can lead to a high-variance
estimator. In fact, from the perspective of effect
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Figure 6: Effects of Unobserved Variables on StackOverflow Data.

restoration, it may be desirable to use high-capacity
models in causal estimation process to drive down
prediction error and subsequently reduce bias.

In this way, our proposed approach—using a
predictive model for effect restoration in pursuit of a
low-variance estimator of causal effect—is similar in
spirit to the use of predictive models for propensity
score matching [19]. Both approaches use a predictive
model to summarize the effect of a potentially large
number of variables.

Fig. 5a shows the graphical model representation
of the experiment. As before, we compare estimat-
ing the effect when a confounding variable is ignored,
when the error in the confounding variable is ignored,
and finally when effect restoration is used. Our re-
sults with an independent estimation process are sim-
ilar to those obtained earlier from both the simula-
tion and real data experiments. We observe the most
reduction in bias when correction based on measure-
ment error is used. We also show that as the influence
of confounding variable increases, the relative benefit
of effect restoration increases.

6.2.2 Empirical Results on Stack Overflow
Data We demonstrate an application of effect
restoration using predictive models on real data from
a popular programming questions and answers site,
Stack Overflow. Our data consists of questions, an-
swers and users in Stack Overflow from 2008 to early
2018. Users interact by posting questions, answer-
ing existing questions, and voting. For each question
and answer, an associated score is accumulated as
users vote on them. Furthermore, user reputations
are built based on the scores of their posts.

Recent studies suggest that different demo-
graphic groups behave differently on Stack Overflow
[7, 21]. Hence, practitioners might want to condition

on demographic variables while estimating causal ef-
fects, which are often unobserved. For example, age
can be an important variable to consider. However,
despite the users’ having the ability to self-report
their age, the data is often missing and potentially
incorrect. One way to adjust for the effect of age is
to apply predictive models to infer users’ ages and
then use those estimated values and error distribu-
tion to perform effect restoration. Again, we employ
the age model described by Oktay et al. [14].

We use 51 treatment-outcome pairs obtained
from question and answer variables. Using condi-
tional independence tests on the variable pairs, as
described in Section 5, we identify causal structures
where age can be a confounding variable. Specifi-
cally, we use chi-squared independence tests to get
the marginal and conditional independence between
all pairs of variables. Due to a large sample size
(> 400k), the p-values are significant even for low ef-
fect sizes. Thus, we focus on marginal independence
effect sizes that are greater than 0.1. This narrows
down the set of possible variable pairs to 14, out of
which we consider three structures with the highest
confounding effects. We use continuous treatment
and outcome variables, and binary confounder vari-
ables for the three structures.

Fig. 6 contains the graphical model representa-
tions of the top three causal structures and the ob-
served effects using the three causal estimation meth-
ods. Similar to our results on the simulated data,
conditioning on estimated values reduces effect size
estimates more than simply ignoring the confound-
ing variables. Furthermore, applying effect restora-
tion reduces the effect size estimates even more. This
suggests that we are able to remove the effect of age
on our treatment and outcome variables.
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7 Conclusions and Future Work

In this paper, we demonstrate the effectiveness of us-
ing effect restoration to combine results from different
machine learning methods. First, we characterize the
behaviour of effect restoration with measurement er-
ror under several plausible graphical structures. We
show that it is desirable to use effect restoration only
in one of the four possible graphical models. In
our simulation analysis, effect restoration adjustment
is most effective for small treatment and large con-
founding effects. Next, we show that the combination
of common temporal assumptions and d-separation
rules can identify if the underlying structure matches
the conditions under which effect restoration is effec-
tive. We also provide empirical evidence that effect
restoration can reduce bias on causal estimation tasks
in real data. Finally, we show that this approach can
be used to adjust for unobserved confounding when
used with independent predictive models and their
corresponding error distributions.

Several future research directions appear promis-
ing. First, our empirical study of effect restoration
could be generalized for mixed-type data sets. Sec-
ond, the use of high-capacity predictive models and
their limitations could be studied. Third, the impli-
cations of effect restoration for estimating joint causal
structures could be further explored.
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